Monday, September 6, 2021

Top 5 Tips to Select the Right Plasma Cutting Consumables

 Choosing the correct plasma cutting consumables is one of the significant steps in ensuring a perfect plasma cutting operation. If not chosen correctly, poorly fitted consumable parts can have a major impact on cutting performance. Damaged or poorly fitted consumables can result in blow-outs, melting, and oddly pitted areas around the nozzles. This is why consumables must be fitted correctly, or else nozzles and body won’t contract that can damage the consumables.


You can avoid these mishaps by selecting the right plasma cutting consumables like hypertherm powermax 45 consumables, hypertherm plasma cutter swirl ring, hypertherm powermax 65 parts, and more. Keep reading this blog post, where we have discussed the top five tips to select the right plasma cutting consumables.


  1. Choose the Right Consumables


The first and foremost tip is to select the right consumables for your machine. You might think, what kind of a tip is it? Isn’t this pretty obvious? Well, the answer is both yes and no. You would be surprised to know how many times people pick up the wrong consumables and install them. For instance, the requirement is of hypertherm powermax 45 consumables and you by mistake picked up hypertherm powermax 65 parts. It’s mainly because many consumables look similar. To avoid this, you can verify if the consumables part numbers match the numbers shown in the operator’s manual.


  1. Set Amperage as per Your Consumables


The amperage that you choose is based on the amperage of your nozzle. That’s the reason why you won’t find the amperage details in the charts or manual. For instance, if you’re using a 60-amp nozzle, then you should set the amp to 60 as well.


You should ensure that you don’t set the amperage lower than the nozzle requirement. Because if you do it, it will generate a low-density cost that can prevent plasma arc from penetrating the material. At the same time, you should not exceed the amperage value more than the capacity of consumables. If you fail to do it, then it will wear down the nozzle quickly.


Setting a higher amperage will offer you a faster cutting rate. In comparison, the lower amperage will offer a better quality of cut.


  1. Know When to Choose Shielded and Unshielded Consumables


You should choose unshielded consumables if your CNC machine does not have ohmic sensing. Similarly, you should go for shielded consumables if your CNC cutting table comes with an ohmic sensing circuit that determines the location of the surface with the use of electrical contact with the material and shield.


  1. Use the Proper Pierce and Cut Height


Maintaining height control is essential once the machine starts cutting. If the height of the torch gets increases even by 0.0005 inches, then you’ll see wider kerf, angularity, dross, warpage on thin materials. Similarly, if the torch is a little closer, then the materials are bound to collide. 


Along with the cut height, you also have to maintain the pierce height to ensure the longevity of consumables’ life. High piercing can prematurely damage the nozzle. Whereas, with the low pierce height, the splatter blown can damage the nozzle. The suitable height for piercing is half of two times the distance between work and torch.

 

  1.  Check Arc Voltage Measurement


Arc Voltage Measurement is an essential factor in choosing suitable plasma cutting consumables. It’s the unit of measurement between cutting material and electrode. It’s also directly proportional to the plasma arc. Higher the value of arc voltage measurement, the longer the arc. That’s the reason why you must be aware of it. You can check the measurement from the manual and set it.


The setting also includes the cut height as per the consumables. In case the consumables are old and torn, you have to maintain the distance manually.


 Conclusion


Choosing the right plasma cutting consumables is essential, and you can achieve this by following the top five tips mentioned here. Following these tips can ensure top-notch cuts along with long consumable life. Here, we have mentioned the top five tips to select the right plasma-cutting consumables.


Source:

Friday, August 27, 2021

Replacing vs Repairing: How to Deal with Damaged Equipment?

What to do when an essential machine part or any equipment has broken down? Whenever an essential piece of equipment has some issues with its functioning, it directly affects your manufacturing productivity. And, of course, your bottom line suffers too. Your team needs to search for a quick, budget-friendly, and effective solution in similar situations. Here, the most crucial question arises- if one should opt for replacing or repairing the equipment?


Often manufacturers choose to repair equipment rather than replacing it with a new one because of the budget factor. But, the costs of repairing frequent breakdowns, unmet productivity, defective output, etc., can sometimes be more than the cost of replacing the equipment. Mitsubishi replacement parts can prove to be the best choice in case you choose to replace them.


Leaving your decisions to guesswork can result in a costly and dangerous approach. So, you should have a list of factors that can help you direct which way your ship should sail. And we got you that list:

 

  1. Data-Driven Decisions


Your only concern should be getting your production back online as quickly as possible. The reactive decision you will make may work out temporarily but can cause trouble in the long run.

 

In addition to the apparent replacement cost of a new piece of equipment, there are other several factors too that you should take into consideration while deciding between getting the equipment repaired or replaced like:

  • Ongoing maintenance can cost over the remaining equipment's life 

  • Costs incurred by the equipment downtime

  • The impact any repair would do on productivity and quality of the equipment

  • Health, safety, and environmental costs that may come with equipment breakdown

  • Training and buying costs for a new piece of equipment

  • Disposal and installation costs


With these many factors to consider, it is clear that you should not make this decision without the proper data analysis.


  1. Analyze the Costs


You should always think long-term while analyzing the costs of repairing or replacing equipment or parts of any equipment. For a new piece of equipment, consider:

  • The cost of purchasing it

  • Its service life

  • Operating costs

  • Potential salvage value

  • Any revenue increase it may bring in the future.

  • Its remaining service life

  • Operating costs and market value

  • Future salvage rate for an old piece of equipment

 

By calculating these figures, you can determine an annual average cost for each option so that it will be  easy to compare. Mitsubishi replacement parts and Mitsubishi machine parts are the best options you can choose for the cost-friendly and efficient replacement of machine parts.

 

  1. Consider the Age of Equipment


Equipment does not age with grace like humans. The older your machinery gets the more extensive repairs it will demand. This translates to higher maintenance costs. Also, as you continue to repair, the machine may perform less and less as per your repair investment. After which, you might want to consider replacing an old malfunctioning piece of equipment with a technologically advanced new model. Probably the one that gives you better efficiency in the long run. 


  1. Consider Downtime


The impact of downtime on productivity while the asset is under repair is a significant factor to observe. If it takes numerous days to get repaired, and if this happens frequently, you know you have lost several hours of productivity. And it is undoubtedly not acceptable. Consider this factor while deciding if you want to get the equipment repaired or replaced.


 

  1. Consider the Cost of Repairs


While calculating the cost of repairs, you should also consider how often you will be paying those costs for repairs? Because you don't want to continue repairing the same equipment several times a year, right? For this, you can look for asset repair events that provide information on the number and frequency of breakdown events and the repairs' costs. 

 

  1. Consider Safety


Often the older equipment causes injury to workers in case of malfunctioning. Even if you opt for up-to-date maintenance, equipment or certain parts of equipment tend to function down as it ages. Also, inspect your machinery before you make any decision. This will help you to determine if your current equipment can continue to provide a safe environment to your workers or need a replacement. If it meets safety standards, it is only worth comparing to the costs of a replacement versus repair.



  1. Consider Efficiency


It is always smart to think of the long run. Questions like, 'How efficiently is your equipment working now?' 'Will a simple repair give the efficiency of the level you want?' 'Would a new piece of equipment with newer features that uses less fuel, and breaks down less frequently be a better choice for your efficiency?' are must-ask for calculating the efficiency that a repair or replacement can give you.

 

Replacements can be costly but efficient too, and that is what matters in the long run. Repairing costs less, but it doesn't make sense if you need frequent repairs, right? We hope your ship now knows which direction is meant for it to sail. Whichever way it is, Mitsubishi machine parts can provide you with the best services for both.


Source:

Wednesday, July 28, 2021

Top 7 Benefits of Plasma Cutting - Vehicle Maintenance and Repair

 


Plasma cutting is an advanced cutting technique. It cuts through the thin sheet metal with a focused and ionized jet of gas. It’s known for cutting most non-ferrous metals, especially sheet-pressed steel, under one inch of thickness.


Plasma cutting is the first choice for fast, clean, and cost-effective cutting today. Its effectiveness on both thick & thin sheets and electrically conductive materials makes plasma cutting distinctive from other cutting methods.


But even after such distinctive advantages, many fabricators are unaware of it. This unawareness leads to the metal fabrication of inferior quality. In this article, we will share the top benefits of plasma cutting that you must know.



Top 7 Benefits of Plasma Cutting That You Should Know [400]


 High Speed

When it comes to cutting speed, plasma cutters top the charts. It can achieve a high temperature of 40,000 degrees Fahrenheit. This high temperature enables plasma cutters to cut through metal at lightning speed. A plasma cutter can cut a 1.25-inch thick sheet of metal in almost 1.5 seconds. To give you a perspective on how fast that is, an oxyfuel cutter takes around 20 seconds to complete the same task. This high speed of plasma cutting enables manufacturers to get more output in a short period.


Versatility

Traditional cutting methods are not that effective with Aluminium and Stainless Steel. Well, this is not the case with Plasma cutting because of its great versatility. Plasma cutting can cut diverse metals like iron, aluminum, brass, steel, copper, etc. 


It can also cut different types of metals stacked over one another. And that too at an impressive cutting speed. You can also achieve this versatility in your cutting operations. For this, you have to invest in Hypertherm plasma cutter parts.


Ease of Use

Plasma cutters are portables as you can take them everywhere with ease. Some brands like Hypertherm are so portable that only a single person can handle Hypertherm plasma cutter parts with ease. You may also consider carrying Hypertherm spare parts for any emergency.


Piercing Speed

Like cutting speed, Plasma Cutting outshines oxyfuel cutting in piercing speed as well. Many times, cutting applications need inside piercing. To pierce 15 mm metal through the Oxyfuel method, it needs a temperature of 1000 degrees Celsius. It takes approximately 30 seconds to achieve that temperature. In contrast, Plasma Cutting doesn’t need this step. So, it can do the same task within two seconds.


Cost-Effectiveness

Plasma cutting helps manufacturers to cut fast, and that too with little waste. Also, it causes little or no loss due to on-job injuries. These factors, and other cost-effective practices, lower the price for the end-user.


Safety

Plasma cutting is a safer option as it relies on inert gases. In comparison, Oxygen-based cutting like Oxy-fuel comes with greater risks. It comes with the risk of accidental ignition or explosion while they are in storage or use. 


Future-Proof

Many traditional cutting methods are on the verge of becoming obsolete. It’s because they have stopped growing and adapting to the latest technology trends. In comparison, plasma cutting is undergoing a process of development and growth. 


It has adopted the current trends in CAD/CAM design technology, CNC machining, and robotics. Such modern features enable metal manufacturers to stay relevant in these changing times.


Conclusion

Plasma cutting has gained popularity among metal fabricators. It’s mainly due to its unmatched precision and speed. It’s an easy-to-use cutting method that is versatile, cost-effective, and safe. You can leverage this future proof cutting method to produce clean, precise, and sealed cuts. To achieve the best results from this cutting method, you can invest in Hypertherm plasma cutter parts and Hypertherm spare parts.


Original Blog:

Steps For Achieving The Perfect Press Brake Bend - Vehicle Maintenance and Repair

 Achieving a perfect press brake bend is a complicated task. And to accomplish it, you’ll require to follow several critical steps in a sequence. It means that you cannot skip any of these steps in the process. Each step is like a link in a chain. Adding these links step-by-step will form the whole chain. This is the reason why the success of every step depends on the success of its previous step.


To ensure the proper implementation of these critical steps, you require an advanced and robust press brake machine. For this, you can simply search “amada press brake for sale” on any search engine and get the best press brake machine for bending metals. Now, without any further ado, let’s have a look at the eight steps for achieving a perfect press brake bend.


Steps to Achieve the Best Press Brake Bend


Choose Metal Type

The first step is to choose the metal type. Different metal types have different properties which affect the way they react to stress. Metals also stretch when bent at different rates of force. The degree of this stretch depends on the material of metals. That’s why it is essential to know about the metal type material you’re going to use for the press brake bend. Apart from the metal material, the other factor determining the bend is the thickness of the metal, the shape of the die, etc.


Create Drawing

The next step is to create the drawing of your desired bend. You can do this by determining the shape of the bend that you want to produce. You can also use the previous reference drawings to ensure the preciseness and accuracy of the bend.


Choose the Bending Method

Choosing the most suitable bending method is critical in achieving a perfect bend. Most of the bending methods look identical, but they do have minor differences which sets them apart. Predominantly, there three types of bending methods:

  • Coining

  • Air Bending

  • Bottom Bending

The selection of the bending method will largely depend on what you’re going to make. Apart from these you also have to consider the following factors:

  • Tools available

  • Size of the metal

  • Type of metal


Determine Tonnage

The next step is to calculate the tonnage which is required to bend the material. The tonnage will also depend upon the material of the bending method. Tonnage charts are readily available on the equipment. If you don’t have one, then you can use the Press Brake tonnage calculator.


Assess Tooling Position

After determining the tonnage, you’ve to assess the tooling position of the material. If you need more tonnage than the concentrated load limit of the machine, then you’ve to go for the off-center. You can check if the press machine allows the off-center. If you don’t have one, you can simply search “  Amada press brake for sale” on any search engine. And get a press brake that comes with an off-center loading.



Install the Right Tooling

Once you make all the calculations, it’s time to set up the machine. This is the most time-consuming process. So, you must ensure that all your calculations are accurate. The manual setting up of parts will differ from machine to machine. If you’re missing a part of the machine, you can simply order Amada replacement parts to continue setting up the machine. If you’re still unsure how to set up the machine, you can consult the manual or ask any experienced press brake operator.


Enter Calculations

Once you set up the machine, you’ve to enter the calculations into your press brake machine. This step is highly dependent on the type of machine that you’re using. If you’re using an older machine, then it might require manual programming. However, the modern press brake machine comes with many things pre-configured. 


Examine Your Bend

The last step is to examine your bend. You can do this with a test run to ensure that everything is perfect before it goes to mass production. If you find any kind of error or defect, then you should go back to the previous steps to find out the source of the error.


It may happen that the initial parts of the mass production will have some imperfections, and that’s normal. However, you must conduct post-run tests to ensure that all the parts are meeting your standards.


Conclusion

Achieving a perfect bend is a step-by-step process where you must get the previous step right before moving to the next one. While implementing these steps, you might encounter some defective parts of the machine that can slow down the process. You can overcome this challenge by replacing those parts with amada replacement parts.


I hope this guide helped you to understand all the steps involved in the process of getting a press brake bend. If you have any questions or queries, you can post them in the comment section


Original Blog:

Wednesday, June 30, 2021

Advantages of Conventional Welding vs Advantages of Laser Welding

 There are many challenges that welders face like working under high temperatures, striving hard for precision, etc. And guess who’s got the solution? Technology. It has almost every solution to upgrade your way of the stick. But remember, upgrading welding parts is equally important. You can invest in Amada parts for complete support in adapting new technologies.

Let us have a look at two of the most common and trusted ways of seal to understand their advantages. This will help you to choose the one best to fulfill your requirements.

Conventional Welding

Invented in: 1800s.

MIG (Metal Inert Gas) and TIG (Tungsten Inert Gas) welding are the two most common forms of conventional seal. This works by using a shielding gas to create an inert atmosphere around the head. This inert atmosphere allows the welds to be isolated from other gases in the surrounding area to stop the welds from becoming porous. An electric arc heats up the metal and metal filler, once melted it joins the material together to create a strong weld.

Advantages of conventional welding

  • With laser seal, when you are welding two materials together, they need to have a good fit up due to the little to no filler used in the weld. While, with conventional welding, you can have the liberty of imperfections in fitting up to two materials by using the filler
  • Conventional Welders cost considerably less in comparison to Laser machines.
  • With a conventional seal, the chances of galvanic corrosion on a workpiece are minimized.

Laser Welding

Invented in: 1967

If talking about basic functionality, laser seal is not much dissimilar to conventional welding. The primary difference is the heat source. Instead of the arc of a MIG or TIG welder, laser welders use a highly focused laser beam (photons of light) as the heat source.

Almost everything, from electronics to medical devices to jewelry making, requires seal of some sort. Even precision in wristwatch welding requires laser technology. Amada laser consumables are the best option to choose for upgrading your seal experience.

The three types of lasers most commonly used in welding applications are:

  • Gas Lasers
  • Crystal Lasers
  • Fiber Lasers

Advantages of Laser Welding

  • Laser welding can weld a whole array of metals like carbon steel, high strength steel, stainless steel, titanium, aluminum, and even precious metals.
  • The laser weld is narrow and has an excellent depth-width ratio. This makes the weld strength much better than TIG and MIG Welding.
  • The heated area of the weld doesn’t spread to the rest of the material and this initiates rapid cooling. By this method, you can handle the materials instantly after the job is complete.
  • Laser Welders don’t require the skill that conventional welding does. Laser Welding offers a much more precise weld in comparison to TIG and MIG welding. Its works from computer input whereas conventional welding requires man force to operate the machine.
  • There is minimal deformation and shrinkage in the material due to the process used for laser welding.
  • One-sided laser welding can replace spot welding which requires access to both sides of the material, as seal needs access to only one side.
  • Due to high precision, the laser produces less scrap as there are rarely any errors.

Concluding…

If I had to choose between the two, I’d have to go with Laser because it provides impeccable precision and of course many other benefits too. One can use laser Welders with Amada parts and Amada laser consumables in industries such as Medical, Automotive, Aerospace, Manufacturing, etc. Laser Machines can also be portable. This helps to reduce downtime by taking the machines on site.

Conventional welding methods are suitable for most standard requirements. They do have some drawbacks though. In many instances, laser seal is an ideal method over conventional methods.

Original Blog: https://altpartsinc.wixsite.com/altpartsinc/single-post/advantages-of-conventional-welding-vs-advantages-of-laser-welding

5 Uses of Laser Cut Parts

Laser cutting is trusted for its accurate cutting by many industries over the past few years. Laser cutting can:

  • Cut or engrave precise lines through a thin plate of steel
  • Mark different materials with varying degrees of thickness And everything in between.

You can use laser cutting on a variety of materials by advancement in technology. Using good quality laser cut parts like Trumpf laser parts can increase the longevity of the final product.

Several industries like:

  • Construction
  • Industrial fabrication/manufacturing
  • Military and Defense
  • Recreational Vehicles
  • OEM
  • Agricultural
  • Furniture
  • Communications/telecom
  • Alternative Energy uses the Laser cutting method

Apart from these industries and cutting metal bodies, there are many other uses of laser cut parts to like:

1. In Jewelry Making

How come jewelry? Well, think of those small gears in a wristwatch or those tiny headphone gears. This precision of laser cutting lends itself to the jewelry-making process. With the impeccable accuracy of the laser cutting process, you can make gears with less waste and less production time.

While talking about uses in the jewelry industry, we should not forget about the engraving capabilities of laser cuts. It can engrave designs and inscriptions onto the interior or exterior surface of the piece. Lasers can cut precise shapes and give desired thickness. And all this makes it reliable to use in the jewelry-making process.

Creating a ring or an anklet of an exact width, depth, and diameter becomes easy with a laser. You can use laser cutting to engrave designs and inscriptions onto the interior or exterior surface of the piece.

2. In Medical Device Manufacturing

One of the most significant uses includes using it for laser surgery in the medical industry. This helps surgeons to make more precise cuts and patients heal much faster after laser surgery. Use Laser cut parts to create medical devices and improve the quality and reliance of the surgery.

Made by using laser cut parts includes Stents, vascular clips, flexible shafts, valve framers, injection molds, etc.

3. In Automotive Manufacturing

The automotive industry is always in a need of exact replicas of a part of different shapes and sizes. Applying cutting methods can reproduce those parts quickly and precisely.

The automotive industry uses cutting to cut down metals and plastics to form body pieces of vehicles, electronic components, interior covers, etc.

Laser cutting processes can cut hydro-formed parts too. These are usually strong tubes that provide support within the structure of the vehicles. Here, the quality ensures trust, thus opting for Trumpf consumables is one of the best choices for the automotive industry.

4. For Dye and Tools Manufacturing

With the laser’s ability to cut a variety of depths into the metal, an accurate dye gets ready or stamping pieces. This will last through the repetitive process of dye-cutting. To increase the longevity of dyes, use Trumpf laser parts in the cutting process.

Within the tool manufacturing industry, cutters can be used for:

  • Marking and engraving
  • Manufacturing of simple hand tools
  • Engraving company logo and tool information onto the rubberized handles of most tools.

The speed of cutters might even make it better than die-cutting on sturdy metals.

5. For Silicon and Ceramic Manufacturing

The laser cutting method allows accurate cutting to produce smaller silicone parts. These can be further used in computers and electronics, textiles, architecture, automobiles, etc.

Lasers cut ceramics in order to reduce processing time without compromising edge quality.

Examples: Airplane jet engines, electric motors, headphones, power plant generators, electric cooktops, etc. Here, using Trumpf laser consumables proves to be reliable.

Laser cutting is one of the most versatile methods used by different industries all over the world. The advancement of technology brought new upgrades to this method. And due to this, the use of cut parts is increasing every day to sharpen or smoothen your manufacturing needs. If you have a cutter for manufacturing, or if you are thinking about investing in one, knowing its current uses might clear your head.

Original Blog : https://altpartsinc.wixsite.com/altpartsinc/single-post/5-uses-of-laser-cut-parts

Different Types And Techniques of Laser Cutting

 Laser cutting has evolved from the 1960s to the tech-savvy age and this evolution brought huge technical updates. Laser cutting process is much more efficient today than the mechanical tooling and cutting process because it costs less and is much more accurate. The laser performs the cut by melting, burning, or vaporizing away the material and leaving a sharp, clean edge.

Materials you can to process by laser cutting include:

  • Paper
  • paper board
  • Adhesive tapes
  • Plastics
  • Films
  • Textiles
  • Abrasives
  • Metals, and
  • Photovoltaic

Bystronic laser parts and Bystronic spare parts make the laser cutting process smooth and efficient. There are different types of lasers and various techniques used for cutting. We shall have a deep discussion on it to know which option this decade has for us.

Types of Laser Cutting:

There are three main types of lasers used for cutting:

1. Gas Lasers

Invented in: 1964

Gas laser known as CO2 laser cutting- completed by using a carbon dioxide mixed laser. In the initial stages of the invention of the gas laser, it wasn’t that powerful to cut metals. Although it is still best suited on non-metals, with the advancement of technology, gas lasers can cut metals too. It has a wavelength of 10.6 micrometers.

Gas laser cutting also uses pure nitrogen to work with metals such as steel and aluminum. But if the nitrogen you are using is not pure then the chances of oxidation are high on the metal you are working with.

Usage: In medical and industrial settings

2. Crystal Lasers

Invented in: 1964

Crystal laser cutting is a process that uses lasers made from nd:YAG (neodymium-doped yttrium aluminum garnet) and nd:YVO (neodymium-doped yttrium ortho-vanadate). These crystals belong to a solid state group that allows high powered cutting. It can be used with both- metals and nonmetals.

Bell lab- the one that created gas layers, same lab created crystal cutting too. It has a wavelength of 1.064 micrometers.

Usage: In medical, dentistry, military and manufacturing industry

3. Fiber Lasers

Invented in: 1961

Fiber lasers have several similarities to the crystal process. Fiber lasers too belong to the solid state group. It has a wavelength of 1.064 micrometers.

This laser cutting type provides a much longer service life than that of the previous two cutting types, probably 25,000 hours. It works with metals, alloys and nonmetals alike, even including glass, wood and plastic. And it requires very little maintenance; even the replacement parts are very inexpensive. Bystronic spare parts come as a best option while replacing laser parts.

Usage: Mainly for metal marking by way of annealing, metal engraving and marking thermoplastics

Different Techniques of Laser Cuttings:

1. Total Control of the laser beam

You have total control of the beam of your laser when you use Bystronic laser parts for fiber lasers. By this, you can control everything from the beam heat output to the intensity of the beam on your material, and even the duration of your beam.

The benefit of this control is that it allows you to work with a range of materials, as well as ensuring that no damage is caused to the material that you are working on.

2. Marking

Marking process involves the melting of a surface layer of a material to leave a mark behind. This process is also possible to complete with a fiber laser.

3. Engraving

Engraving process is very similar to the marking process; the only difference is that the aim here is to create a deep and engraved mark which manufacturers often use for applications such as creating barcodes.

Being the most accurate cutting method, laser cutting has been a hype of many manufacturing industries for years. Specifications and precise cuttings are the reasons for its reliability. Technology is upgrading every day and so will the types and techniques of laser cutting. And it is important to know about the types and techniques of laser cutting, so that you can make the most of them by creating different usage options.

Original Blog : https://altpartsinc.wixsite.com/altpartsinc/single-post/different-types-and-techniques-of-laser-cutting